Platform Chemicals from Biomass Fermentation

a Report Prepared for Chemistry Innovation KTN

by

Miller-Klein Associates Ltd

Saith Ffynnnon Farm

Whitford

Flintshire

Platform Chemicals from Biomass Fermentation

The following table shows the main platform chemicals and derivatives that could be derived from processing of plant biomass in a biorefinery, and includes glycerol generated as a by-product from bio-diesel.

The material name, structure, applications and current production volumes are given if available.

The principal sources of information used were:

- "Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources -The Potential of White Biotechnology", final report of the BREW project, University of Utrecht, 2006
- "Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas" National Renewable Energy Laboratory, Pacific NorthWest National Laboratory, US Department of Energy Biomass Programme, 2004
- "Handbook of Industrial Chemistry Organic Chemicals" Ali, Mohammad Farhat; El Ali, Bassam M.; Speight, James G. © 2005 McGraw-Hill
- www.wikipedia.org

The table covers a selection of the potential platform chemicals and derivatives that are reported in these and other publications. The criteria for selection were:

- Could be produced from a feedstock suitable for biofuel production
- Known biotechnological or chemical route to material
- Known or predicted industrial application

Direct extracts from plant biomass (eg plant sterols, artemisinin, plant waxes etc) have been excluded from this table.

General Points

The chemicals produced from a fermentation biorefinery have two important characteristics:

They are typically oxygenates

Starting from sugars and starches which are highly oxygenated, the vast majority of potential platform chemicals that have been described also carry at least one oxygen atom – sometimes several. This is important for downstream processing. The petrochemical based chemical industry traditionally manipulates the main structure of a molecule as a hydrocarbon; adding heteroatoms at a later stage in the process. In contrast, when starting from bio-based platform chemicals oxygen is almost always already present. This dramatically changes the synthetic strategies for reaching target molecules. As a result bio-based platform chemicals cannot easily be introduced into the material flows for the current mainstream chemical industry.

They are typically multifunctional

The majority of the platform chemicals and their derivatives have more than one functional group available for further reaction. This multifunctional nature makes them extremely flexible when devising synthetic strategies, and makes them particularly appropriate for polymerisation reactions; e.g. the production of polyesters, polyethers and polyurethanes.

Given these characteristics, the platform chemicals and their derivatives listed currently find application in:

- Fuel and fuel additives
- Solvents
- Polymers
- Coatings adhesives sealants and elastomers
- Lubricants and hydraulic fluids
- Surfactants
- Cosmetic ingredients

Notes on the Tables

The tables in this appendix show information about the platform chemicals and their derivatives. The column headings are:

 Carbon number 	Number of carbon atoms in the backbone of the platform chemical. Ranges from 2 to 6.
 Platform chemical 	The name of the platform chemical with a specific carbon number.
 Derivative 	The name of a derivative of a specific platform chemical.
 Structure 	The molecular structure of the platform chemical or derivative. In cases where the structure is variable, either no structure or a 'typical' structure is given.
 Applications 	Known or predicted applications of the platform chemical or derivative. Almost all of these are current commercial applications.
 Production 	Information on the global production of the chemical where known.

Carbon Number	Platform Chemical	Derivatives	Structure	Applications	Production
2	Ethanol		ОН	70% fuel,20% industrial,10% beverages	40bn litres in 2003. >90% by fermentation.
		Ethylene	H ₂ C=CH ₂	Key chemical building block : Polyethylene PVC Ethylene oxide Ethylene glycols	94 Mt (2002)
		Ethyl <i>tert</i> -butyl ether	СH ₃ H ₃ C — СH ₃	Fuel additive. Competes with MTBE and Ethanol	5 bn litres p.a.
		Ethyl esters		Greener solvents	1 Mt p.a. of ethyl acetate
		Ethylethers	R ^O CH ₃	Solvents and medical applications	
		Glycolethers	R ₀ OH	Solvents – cellosolve and carbitols	
		Ethylamine	NH ₂ H ₃ C	SolventSynthetic intermediate	80 kt p.a.
		Acetaldehyde	н₃сО	Production of:Acetic acid and anhydridePyridine	1.35 Mt (1993)
2	Acetic acid		H₃C → OH	Production of:Vinyl acetateAcetic anhydrideUsed as a solvent	>7 Mt p.a. 190 kt by fermentation

Acetic anhydride	CH ₃ CH ₃	Acetylating agent for alcohols and amines Dehydrating agent	1-2 Mt p.a.
Vinyl acetate	н₂с=_0сн₃	Monomer for polymer and copolymer production: Polyvinylacetate Polyvinylalcohol Ethylene – vinyl acetate	4 Mt p.a.(2002)
Ethyl acetate	о н _з с— сн _з	Green solvent	1 Mt p.a.
Chloroacetic acid	CI OH	 Production of: Carboxymethylcellulose Phenoxy herbicides As a difunctional reactive intermediate 	370 kt p.a.
Peracetic acid	HO ^O CH ₃	 Antimicrobial Bleaching agent Oxidising agent to produce epoxides and alcohols 	18 kt p.a.

Carbon Number	Platform Chemical	Derivatives	Structure	Applications	Production
3	Lactic acid		HO O H ₃ C OH	Food and beveragesGreen solventsBio-polymers	150 kt in 2002 – almost entirely by fermentation
		Polylactic acid		 Compostable polymer from renewable source Packaging Fibres and Textiles 	140 kt p.a. production capacity
		Lactic acid salts	Ŭ	 Food and beverages Permeation enhancer (medical) 	
		Esters		 Green solvents (eg ethyl lactate) 	5 kt p.a.
		Chiral esters		 Chiral synthons for pharmaceuticals and agrochemicals 	
		Acetaldehyde	н₃сО	Common 2 carbon building block in synthesis	
		Acrylic acid		 Acrylates Polymers and copolymers for coatings, adhesives, sealants and elastomers 	>2 Mt p.a.
		Lactamides	R HO NH R H ₃ C O	Plasticisers	
		1,2-Propanediol	но снз	 moisturizer in medicines, cosmetics, food, and tobacco products medical and sexual lubricant emulsification agent solvent for food colors and flavourings 	0.9 Mt p.a. €1000-€1200/t

				 humectant carrier in fragrance oils non-toxic antifreeze main ingredient in cosmetic products, including baby wipes, bubble baths, deodorants, shampoos, and hair dyes working fluid in hydraulic presses 	
		Propionic acid	H0 H ₃ C	 Preservative Esters used as solvents Chemical intermediate 	130 kt (1989)
		2,3-Pentadione	H ₃ C CH ₃	 Solvent Flavour synthesis Chemical intermediate 	
		Oxalic acid	но о	 Mordant for dyeing Household chemicals Rust remover and rust proofer 	
		Pyruvic acid	о о Н ₃ С ОН	 Medical applications Production of plant growth regulators 	
3	3-Hydroxypropionic acid		он	Acrylic polymersSpeciality polyesters	
		1,3-Propanediol	HOOH	 Polymer building block (PTT) 	80 kt p.a.
		Malonic acid	но он	 Synthetic intermediate for pharmaceuticals, agrochemicals and flavors & fragrances compounds. 	

		Acrylic acid	HO	 Acrylates 	>2 Mt p.a.
		Aci yile aciu		 Activities Polymers and copolymers for 	~2 ivit p.a.
			0—(coatings, adhesives, sealants and	
			н,с=/	elastomers	
		Acritamida	-		
		Acrylamide	H ₂ N	Production of polymers and modified	
)—o	copolymers for:waste and sewage treatment,	
				 waste and sewage treatment, paper and pulp manufacturing 	
			H ₂ C=	 paper and pup manufacturing oil recovery and ore processes 	
				 on recovery and one processes soil stabilizer 	
				 adhesive coating 	
				 food processing. 	
		Methyl acrylate	0	Production of:	
			Ĭ	 coatings, elastomers, adhesives, 	
			H ₂ C	thickeners.	
			- ··· · · · · · · · · · · · · · · · · ·	 amphoteric surfactants, 	
				 fibers, plastics, textiles and inks 	
			CH3	Chemical synthesis.	
3	1, 3-Propanediol		HOOH	 Polymer building block (PTT) 	80 kt p.a.
		Polytrimethylene	~ ~ ~	 Fibres and textiles 	>100 kt p.a. installed capacity
		terephthalate		 Engineering plastics 	, ,
				Brand names Sorona and Corterra	
		Polyurethanes		 Chain extender for thermoplastic 	
				polyurethanes – replacement for	
				1,4-butanediol	
		Copolyester ethers		 High performance elastomers 	
3	Glycerol		ŎН	 Triacetin 	600 kt p.a. in Europe (2006).
				 Food additive 	Increased from ~200 kt in
				 Pharmaceuticals 	2000. Expected to continue to
				 Personal Care 	rise due to increased
			он он	 Polyols 	production of biodiesel
				 Alkyd resins 	
				Tobacco	2006 price ~500€/t – a
				 Explosives 	historically low level.
				Detergents	
				Cellophane	4.0.14
		Epichlorohydrin	o. CI	Epoxy resins	1.2 Mt p.a.
1			\sim /	 Paper chemicals 	\$2300/t
					φ2000/1

		Water treatment	
		 Polyglycerols 	
1,2-propanediol	но СН3	 moisturizer in medicines, cosmetics, food, and tobacco products medical and sexual lubricant emulsification agent solvent for food colors and flavourings humectant carrier in fragrance oils non-toxic antifreeze main ingredient in cosmetic products, including baby wipes, bubble baths, deodorants, shampoos, and hair dyes working fluid in hydraulic presses 	0.9 Mt p.a. €1000-€1200/t
1,3-Propanediol	HOOH	 Polymer building block (PTT) 	80 kt p.a.
Mono-, di- and tri-esters		 Food additives Emulsifiers 	
Polyglycerols		 Non-ionic surfactants. Emulsifiers in food, cosmetics etc Antifogging agents in polyolefin films 	
Glyceric acid	ОН ОН ОН	 Potential for PLA analogues with different properties 	
Acrolein	0=/ ^{-CH2}	Acrylic acid esters,Polymers,Detergents	

Carbon Number	Platform Chemical	Derivatives	Structure	Applications	Production
4 5	Succinic acid		но	 Sweetener in food and beverages 	16 kt p.a.
		1,4-Butanediol	но	 Polybutylene terephthalate (PBT) Polybutylene succinate (PBS) 	512 kt p.a. (1995)
		γ-Butyrolactone		 Solvent for polymers and agrochemicals. Intermediate in the manufacture of pyrrolidone derivatives 	
		Tetrahydrofuran	$\langle \rangle$	 Solvent Thermoplastic polyurethanes, Elastic fibres, Moulded elastomers, Copolyesters and copolyamides. 	140 kt p.a. (1992)
		<i>N</i> -Methyl-2-pyrrolidone (NMP)	O N CH3	 Solvent Reaction medium 	30 kt p.a.
		Di-esters		 Green solvents Fuel oxygenates 	
		Polyamides	2		
		Polyesters		 e.g. polybutylene succinate 	

4	Fumaric Acid		но	 Unsaturated polyester resins Food additive Animal feed Dye mordant Polyhydric alcohols 	12 kt p.a.
		1,4-Butanediol	НО	 Polybutylene terephthalate (PBT) Polybutylene succinate (PBS) 	512 kt p.a. (1995)
		γ-Butyrolactone		 Solvent for polymers and agrochemicals. Intermediate in the manufacture of pyrrolidone derivatives 	
		Tetrahydrofuran	\bigcirc	 Solvent Thermoplastic polyurethanes, Elastic fibres, Moulded elastomers, Copolyesters and copolyamides. 	140 kt p.a. (1992)
		Unsaturated polyesters		Replaces maleic acid and maleic anhydride for polyesters with: Improved thermal stability Greater hardness	
		L-Aspartic acid		Production of sweetener aspartame	13 kt p.a.
		L-Alanine			
		Succinic acid	но	 Sweetener in food and beverages 	16 kt p.a.

4	Aspartic Acid			Production of sweetener aspartame	13 kt p.a.
		Amino-γ-butyrolactone		Potential polymer and solvent applications	
		Aspartic anhydride		Potential polymer and solvent applications	
		3-Aminotetrahydrofuran		Potential polymer and solvent applications	
		2-Amino-1,4,-butanediol	HO HO OH	Potential polymer and solvent applications	
		Polyaspartic acid		 Potential substitute for polyacrylates and polycarboxylates. Potential applications in: Detergents, Water treatment, Corrosion inhibition Super-absorbers. 	
4	1-Butanol		Н ₃ СОН	 Solvent Thinner for varnishes and lacquers Plasticizers Butylamines Butyl acetate, Acrylic esters, Glycol esters. 	2 Mt p.a.

4	1,4-Butanediol		НО	 Polybutylene terephthalate (PBT) Polybutylene succinate (PBS) 	512 kt p.a. (1995)
		Polybutylene terephthalate (PBT)			340 kt p.a. (1997)
		Polybutylene succinate (PBS)			33 kt p.a. installed capacity 2006
		Polyurethanes			
		γ-Butyrolactone		 Solvent for polymers and agrochemicals. Intermediate in the manufacture of pyrrolidone derivatives 	
		Tetrahydrofuran	$\langle \rangle$	 Solvent Thermoplastic polyurethanes, Elastic fibres, Moulded elastomers, Copolyesters and copolyamides. 	140 kt p.a. (1992)
		Adipic acid	но	 Nylon 66 Lubricant esters Plasticizers Polyurethanes 	2.5 Mt p.a.
		Pyrrolidones	R-N	Chemical intermediate	

Carbon Number	Platform Chemical	Derivatives	Structure	Applications	Production
5	Xylose / Arabinose		но он	 Source of C5 sugars for chemical synthesis 	
		1,2,4-Butanetriol	ноон	 Explosive Propellant Chiral synthon 	
		Xylitol / Arabinitol	он он но но он	 Sweetener 	
		Xylaric, Xylonic, Arabonic, Arabinoic acid		 Potential uses in new polymers 	
		Polyesters		 Xylitol/arabinitol with other glycols for unsaturated polyesters 	
		Ethylene and propylene glycol	ноон	DeicerAutomotive antifreeze	

			но ОН СН3	 Building block unsaturated polyesters 	
		Levulinic acid	н _з с он	See below	See below
5	Levulinic acid		н _з с Он	Chemical intermediate	450 t p.a.
		Methyltetrahydrofuran	H ₃ C	SolventFuel oxygenateChemical intermediate	
		Esters		 Fuel oxygenates 	
		γ-Valerolactone	H ₃ C 0 0	 Solvent Chemical intermediate 	
		5-Methyl-2-pyrrolidone	H ₃ C N O	 Solvent Chemical intermediate 	
		δ-Amino-levulinic acid		Herbicide	
		Diphenolic acid		 Potential replacement for Bisphenol-A 	
		1,4-Pentanediol	HOCH3	 Diol for polyesters 	

		β-Acetyl-acrylic acid	0	Co-polymers	
			Н ₃ С ОН		
		Succinic acid	но	 Sweetener in food and beverages 	16 kt p.a.
		Acrylic acid		 Acrylates Polymers and copolymers for coatings, adhesives, sealants and elastomers 	>2 Mt p.a.
5	Furfural			 Extraction solvent Nematicide Fungicide Resins 	200 kt – 300 kt
		Furfuryl alcohol	ОН	Resins	120 kt – 180 kt p.a.
		Furoic acid	ОН		
		Tetrahydrofurfuryl alcohol	О	SolventIndustrial cleaning	
		Furfuryl amine	NH ₂	Pharmaceuticals	
		Tetrahydrofuran	$\langle \rangle$	 Solvent Thermoplastic polyurethanes, Elastic fibres, Moulded elastomers, Copolyesters and copolyamides. 	140 kt p.a. (1992)

Levulinic acid	H ₃ C OH	Chemical intermediate	450 t p.a.
Maleic anhydride	0	 Important chemical intermediate 	
Thermoset resins		 Foundry binder 	

Carbon Number	Platform Chemical	Derivatives	Structure	Applications	Production
6	2,5- Furandicarboxylic acid		но он	 Potential as monomer to replace terephthalic acid 	
		2,5-Dihydroxymethylfuran	но он	 Potential use in new polyesters 	
		2,5-Dihydroxymethyl- tetrahydrofuran	но он	 Potential use in new polyesters 	
		2,5-Bis(aminomethyl)- tetrahydrofuran	H ₂ N NH ₂	 Potential use in new polyamides 	
6	Sorbitol		он он но он он он он	 Sweetener Humectant Thickener Cryo-stabiliser Amateur rocket fuel 	1.1 Mt p.a.
		1,4-Sorbitan	ОН ОН ОН	 Esters used as non-ionic surfactants Solubiliser Emulsifier 	50 kt p.s.
		Isosorbide	но о ОН	 Pharmaceutical (vasodilator) Esters used as solvent in cosmetics Potential for use as diol in polyesters Potential for plasticizers 	800 t p.a.
		Polyetherpolyols		 Polyurethane synthesis 	

		Ascorbic acid	НО ОН ОН	 Salts – antioxidants for aqueous systems Esters – antioxidants for non- aqueous systems 	
6	5- Hydroxymethylfufural		O OH	Phenolic resins	
		5-Hydroxymethyl-furoic acid	но		
		2,5-Furan dicarboxylic acid	но он	 Green alternative to terephthalic acid 	
		Furandialdehyde	o o o	 Potential for new polyesters 	
		2,5-Dihydroxymethylfuran	но он	 Potential for new polyesters 	
		2,5-Diaminomethylfuran	H ₂ N NH ₂	 Potential for new polyamides 	
		2,5-Dihydroxymethyl- tetrahydrofuran	но Он	 Potential for new polyesters 	
6	Adipic acid		OH O O O O O O O O H	 Nylon 66 Lubricant esters Plasticizers Polyurethanes 	2.5 Mt p.a.

Polyamides		Engineering plasticsFibres	
Polyurethanes			
Esters	•	 Lubricants 	
	•	 Solvents 	